
All you need to know about plugins and related api methods.

Introduction
Commands Guide
Events Guide
Fallback & Join Handler
Proxy Communication
Scheduling Task

Plugins

Create a new maven project in IDE of your choice. We recommend you to use Jetbrains IDE for Java
i.e. Intellij IDEA. It comes in two versions that are free and paid.

Open your pom.xml file and add the repository in the pom.xml so it can fetch the WaterdogPE
Plugin API dependencies

Add the dependency for WaterdogPE plugin API

Add the following build code to allow the plugin.yml and other config files being included in the jar:

Introduction
Maven Project Setup

<repository>

	<id>waterdog-repo</id>

 	<url>https://repo.waterdog.dev/artifactory/main</url>

</repository>

<dependency>

 	<groupId>dev.waterdog.waterdogpe</groupId>

 	<artifactId>waterdog</artifactId>

 	<version>1.2.3-SNAPSHOT</version>

 	<scope>provided</scope>

 </dependency>

<build>

	<resources>

		<resource>

			<directory>src/main/resources</directory>

			<filtering>true</filtering>

		</resource>

	</resources>

</build>

A base proxy command is represented by a class extending dev.waterdog.command.Command .

The constructor of the class requires two arguments:

name: string settings: dev.waterdog.command.CommandSettings .

The name argument is the name of the command, as it would be written when you want to
execute it. The settings object contains information like command description, usage message,
required permission etc.

A CommandSettings object can be simply created using the CommandSettings.builder() function.
Using the Builder class, you can create the CommandSettings object in a single line of code,
finishing with Builder#build() . This can look like this:

That can be passed aswell when creating the command object without overwriting the constructor.

Commands Guide
Proxy Commands
Command class

Constructor

public InfoCommand() {

 super("wdinfo", CommandSettings.builder()

 .setDescription("waterdog.command.info.description")

 .setUsageMessage("waterdog.command.info.usage")

 .setPermission("waterdog.command.info.permission")

 .build());

}

That said, overwriting the constructor looks more clean.

The central function every Command needs to inherit and overwrite is boolean
onExecute(CommandSender sender, String alias, String[] args) . Sender represents the proxy entity
which executed the command. As both the ProxiedPlayer and the ConsoleCommandSender class
implement that interface, it is required to check if the sender provided is a player or not, at least
when you are performing any player-specific actions (sending popups, transferring..).

Alias is provided when the player used an alias of the command to trigger the command. If he uses
the base command name, that parameter will be null .

Args is an array of all the arguments provided with a command, excluding the command itself. For
the command /test 123 Hello true , the args array would look like this: {"123", "Hello", "true"} .
As you can see, you still need to perform manual user input sanatizing and proper type casting, as
we provide all the arguments as strings.

Many people might want to use client-sided autocompletion to reduce the time to type a
command.

Warning: You need to enable inject_proxy_commands in your config.yml in order for this to

work

Doing that looks complex but isnt that hard at all. Every command has a single, optional string

argument by default. This

behaviour can be overwritten. Every command class has the method public CommandData
craftNetwork() . This method is defining the above behaviour by default using the following code

Execute Function

Client-Sided autocompletion

public CommandData craftNetwork() {

 CommandParamData[][] parameterData = new CommandParamData[][]{{

 new CommandParamData(this.name, true, null, CommandParamType.TEXT, null,

https://docs.waterdog.dev/uploads/images/gallery/2020-11/screenshot-86.png

Now, I won't go into detail what every single argument does. The two-dimensional
CommandParamData array contains multiple optional overloads (for example: string, int int; or int,
int int). Using the protocol class com.nukkitx.protocol.bedrock.data.command.CommandParamType , you
can define data-types for parameters, which will be displayed client-sided. Every
CommandParamData object represents one argument has the following constructor arguments:

name: string: the name of the parameter, as displayed to the client
optional: bool: whether the parameter is optional or not
enumData: CommandEnumData: Client enum data. This can be for example a list of items or
other options. Can be tab-completed.
type: CommandParamType: The data type of the command argument. Examples: string, int,
player, boolean..
postfix: string: Command postfix, should be null in most cases
options: List: List of additional parameter options, for example disable auto completion

We can now take an example from the Waterdog default /server command.

Here two parameters are added to the command:

Collections.emptyList())

 }};

 return new CommandData(this.name, this.getDescription(), Collections.emptyList(),

(byte) 0, null, parameterData);

}

 @Override

 public CommandData craftNetwork() {

 CommandParamData[][] parameterData = new CommandParamData[][]{{

 new CommandParamData("server", false, null, CommandParamType.TEXT, null,

Collections.emptyList()),

 new CommandParamData("player", true, null, CommandParamType.TARGET, null,

Collections.emptyList())

 }};

 return new CommandData(this.getName(), this.getDescription(),

Collections.emptyList(), (byte) 0, null, parameterData);

 }

"server": the server that the you want to transfer to. has the type text, and is optional.
"player": the player you want to transfer. Has the type tagret(player) and is optional

Command Maps are the "storage" for commands. You register commands and aliases there aswell
as unregistering them. They also take care of interpreting command messages. In Waterdog
command maps are represented by the dev.waterdog.command.CommandMap interface. The
ProxyServer holds an instance of an class implementing that interface.

The SimpleCommandMap class implements default behaviour for command registering, unregistering
aswell as parsing as we know it in vanilla. It uses the command prefix / and takes care of
permission checking and success checking.

The DefaultCommandMap class extends the previously mentioned SimpleCommandMap and does
nothing special except registering the very basic commands that are shipped with Waterdog.

In the Waterdog API, entities which are able to execute commands are represented by the
CommandSender interface. It requires the ability to check for permission, the ability to send

messages, get the name etc.. When handling a command in onExecute(), you are not passed a
ProxiedPlayer but a CommandSender .

By default there are two types of Command Senders: ProxiedPlayer and ConsoleCommandSender .

Command Maps

SimpleCommandMap

DefaultCommandMap

Command Senders

Defaults

The ProxiedPlayer class or any base class extending it also implements the CommandSender
interface. sendMessage will send the message to the player InGame and hasPermission will check
the permission map for the requested permission. getName will simply return the players name as
received in the LoginPacket.

ConsoleCommandSender is used by the Proxy Console. It has all permissions, meaning
hasPermission returns true in any case, getName returns "Console", and sendMessage will simply

send the message in the console with the INFO log level.

In onExecute, you get passed a CommandSender instance, but you don't know if its a player or the
console or any 3rd party command sender. Because of that you should check, for example using
instanceof , if the CommandSender is a player. If you don't do that but simply cast the
CommandSender to ProxiedPlayer , the command will throw an exception when executed by the

console. Especially when the command attempts to invoke player-specific actions, for example
transfers, checking is required.

ProxiedPlayer

ConsoleCommandSender

CommandSender in onExecute

Events allow developers to execute own piece of code when something important happens (fe.
player joins). WaterdogPE comes with powerful API which allows developers to create and call own
events or handle default events.

A base event is represented by extending the dev.waterdog.event.Event class.

If base event class implements CancellableEvent interface, the event will be considered as
cancellable. We use cancellable events to signalize that some task should be canceled or ignored.
CancellableEvent implements these methods:

isCancelled() : bool returns true if the event is cancelled.
setCancelled(bool) : void sets whether the event will be cancelled.

Our goal is to use the multi threading feature provided by Java as much as possible. Therefore we
have created async events. To mark an event as async, use the AsyncEvent annotation. This event
will have all the event handlers called asynchronously using a thread pool executor. Async events
are supposed to not block the original thread where the event is called from. Using async events is
recommended especially for events which don't change any values.
Example of async event:

Events Guide

Event class

CancellableEvent

AsyncEvent

@AsyncEvent

public class TransferCompleteEvent extends Events {

 // Your code here...

Events are handled using runnables with the event as an argument (consumer). Subscribing to an
event is done through the EventManager class using the subscribe(Event, Handler, EventPriority)
method. This will add your method to list of handers which will be executed once event is called.
Example of handling an event:

If the event has more handlers we might want to create, prioritize the order of events. using the
EventPriority enum we can define priorities per handler. Events with lower priority will be

executed first and its values may be changed by handlers with higher priority. By default
EventPriority.NORMAL is used.

Subscribing with defined priority: subscribe(PlayerChatEvent.class, this::onChat,
EventPriority.HIGHEST)

To call specific event instances we use the callEvent(Event) method. This method will schedule

}

Event handling

public void onEnable() {

 // PlayerChatEvent - the event to be subscribed

 // this::onChat - reference to the method which will be executed

 this.getProxy().getEventManager().subscribe(PlayerChatEvent.class, this::onChat);

}

public void onChat(PlayerChatEvent event) {

 // Getting value provided by event

 ProxiedPlayer player = event.getPlayer();

 // Cancelling event

 event.setCancelled(true);

}

Event priority

Event calling

every task from event handlers in prioritized order. If the event has AsyncEvent annotation present
the method will return CompletableFuture<Event> which will be completed once all handlers will be
executed. If the event has not annotation preset, null will be returned.
Calling non-async event:

Calling async event:

ProtocolCodecRegisterEvent event = new ProtocolCodecRegisterEvent(protocol, builder);

proxy.getEventManager().callEvent(event);

if (event.isCancelled()){

 // Your code here...

}

PlayerLoginEvent event = new PlayerLoginEvent(this);

this.proxy.getEventManager().callEvent(event).whenComplete((futureEvent, exception) -> {

 if (futureEvent.isCancelled()) {

 // Your code here...

 }

});

The IJoinHandler and IReconnectHandler interfaces are providing plugins with an easy API to
change some of the most important parts of your network's behaviour.

The ProxyServer object holds one instance of each interface, accessible using
ServerInfo#setReconnectHandler(IReconnectHandler) and ServerInfo#setJoinHandler(IJoinHandler) .

Setting them to null will cause massive issues. Rather implement NO-OP handlers.

The IJoinHandler interface only requires one method to be implemented, namely the
determineServer(ProxiedPlayer) method. This method is called whenever a player connects to the

proxy.
This method can only return an instance of ServerInfo or null . If the method returns a ServerInfo
object, the player's initial connection while be established to that ServerInfo.
If null is returned, the player will be disconnected from the proxy as there is no server available for
it to use.

This method can be used perfectly if you are having multiple lobby-instances in your network (for
example). You can then implement f.e. a Round-Robin determination model to evenly distribute
players over your lobby-instances. You could also send player to servers depending on where they

Fallback & Join Handler
Introduction

Setting the handlers

IJoinHandler

Use case

https://en.wikipedia.org/wiki/Round-robin_scheduling

were last, or depending on any other set of conditions that you would like to enforce.

The IReconnectHandler is called whenever a player is disconnected from a downstream server.
This can be caused by a kick, a server shutdown or even a Proxy <-> Downstream timeout. This
method will then be called in order to determine the future of the player.
The interface only requires the implementation of the getFallbackServer(ProxiedPlayer,
ServerInfo, String) method, where the ServerInfo is the information holder of the downstream
server the player was disconnected from, and the String is the reason the player was disconnected
with (if given).

In some network concepts, you could want to prevent players from being kicked from the network.
This could be the case f.e. for minigames-servers where servers might crash / close down, but
you'd still want the player to stay on the proxy but instead be sent to your lobby. In that case
you'd just return the ServerInfo of the lobby to transfer the player to.

Important is that you can filter this input by using the kickMessage method parameter. With that
you could catch players which are being kicked for "Internal Server Error" or "Server closed", but
still completly disconnect players that are kicked for "You are banned" or "You have been kicked".
If you are returning a ServerInfo object, you can also send the player titles, text messages or other
types of output to notify him of the disconnect.

This note is regarding the performance of this system. You should not execute any time-
expensive code in either of these methods, as that causes some players to lag while the code is
running. Instead, try to run f.e. SQL queries periodically in the background, store the results easily
usable in-memory and access those results in the method.

IReconnectHandler

Use case

Important note

A simple example plugin

Excerpt of the WaterdogPE code.
Returns the first server from the server priority list.

Examples
Setting the handlers

ProxyServer server = ProxyServer.getInstance();

IReconnectHandler reconnectHandler = new MyCustomReconnectHandler();

IJoinHandler joinHandler = new MyCustomJoinHandler();

server.setJoinHandler(joinHandler);

server.setReconnectHandler(reconnectHandler);

Custom IJoinHandler

public class VanillaJoinHandler implements IJoinHandler {

 private final ProxyServer server;

 public VanillaJoinHandler(ProxyServer server) {

 this.server = server;

 }

 @Override

 public ServerInfo determineServer(ProxiedPlayer player) {

 return

this.server.getServer(this.server.getConfiguration().getPriorities().get(0));

 }

}

https://github.com/WaterdogPE/Example-plugins/tree/main/RandomServerJoin

Tries to find a server which is not the server the player was kicked from. If none was found, return
null.

Custom IReconnectHandler
public class TestFallbackHandler implements IReconnectHandler {

 @Override

 public ServerInfo getFallbackServer(ProxiedPlayer proxiedPlayer, ServerInfo serverInfo,

String s) {

 for(ServerInfo i : proxiedPlayer.getProxy().getServers()){

 if(!i.getServerName().equals(serverInfo.getServerName())){

 return i;

 }

 }

 return null;

 }

}

Its common that bigger networks requires some synchronization and communication between
downstream servers and proxy. There are different ways how communication can be implemented.

This type of communication is not supported in WDPE. But understanding how this method works
may be useful.

The downstream server sends a packet thought client connection to the proxy. Proxy will then
intercept the packet and handle it as it likes, parsing the payload to get request data or whatever
the downstream server sent. In specific situation proxy could send packet to client as an additional
data exchange (but since 1.16 client is crashing if it receives this packet).

More about plugin messages can be found on Tobias's gist.

Creating extra connection between downstreams and proxy can be done thought TCP/UDP
sockets. Usually this is the most effective way of data synchronization.
If you are looking for socket solution we recommend to check StarGate, a project developed by
one of the WaterdogPE developers, which allows exactly such communication. You can get support
with this project on our Discord server.

There are more architectures how could communication be done:

Proxy Communication

Plugin Messages

Custom socket communication

https://docs.waterdog.dev/uploads/images/gallery/2020-12/pluginmessage-01.png
https://gist.github.com/TobiasG-DE/9b3359051fb9370447074956b86f7d5e
https://github.com/Alemiz112/StarGate

This is the simpler implementation which is usually good enough for all networks. In this
architecture proxy acts as server for downstream socket clients - manages connections, forwards
data between clients. All clients are connected to specific proxy.

Easy data exchange between proxy and downstream.
Handled data can be easily proceed by proxy itself.

Proxy acts as the master. If proxy went down downstream clients will be disconnected.
Implementation of custom clients which would be part of the backend system may be harder.
Using multiple proxy instances would mean multiple open downstream client connections.

Networks which are using more proxies or needs synchronization with backend system would
probably prefer this architecture. Custom application running in backend acts as server. Proxy and
downstream servers are in this clients to the application. This application (server) handles
received data from downstream client, process it and if needed sends to destination proxy.

Ability to communicate with multiple proxies using one downstream client.
Ability to communicate between proxies.
Proxy can be terminated without disconnecting any of downstream clients.

Maintenance of whole stack may be harder.
Communication between downstream and proxy may be bit slower.

Proxy-Server

Pros:

Cons:

Backend-Server

Pros:

Cons:

Due to lack of knowledge many users tend to use "poor" solutions which will do their job.
Periodically scanning database table, querying results isn't the correct way how to exchange data
between downstreams and proxy. We do not recommend any of this methods:

Using Minecraft query methods to get information from downstreams.
Any response system based on SQL or database queries.
Shared file databases (and SQLite) between proxy and downstreams

If you really want to use any of this non-recommended methods consider using Redis instead of
file, database or sockets solution.

Not recommended solutions

To submit custom repeating, delayed, async tasks WDPE has implemented WaterdogScheduler .

Scheduler can be accessed from proxy instance using ProxyServer.getScheduler() or using
WaterdogScheduler.getInstance() .

You have several options to execute task. Here are all methods:

scheduleAsync(Runnable task) : Submit the task to task pool and execute it async (using
executor service).
scheduleTask(Runnable task, boolean async) : Submit the task and execute it. Executes task

asynchronously if async = true .
scheduleDelayed(Runnable task, int delay, boolean async) : Submit the task to queue and

execute it after specified delay (in ticks, 1 tick = 50ms). If async = true task will be
executed asynchronously.
scheduleDelayed(Runnable task, int delay) : This is alias to scheduleDelayed(Runnable task,
int delay, boolean async) where async = false .
scheduleRepeating(Runnable task, int period, boolean async) : Schedule repeatiting task with

given period (in ticks). If async = true task will be executed every time asynchronously.
Note that task may mot be executed on same thread!

scheduleRepeating(Runnable task, int period) : Alias to scheduleRepeating(Runnable task, int
period, boolean async) where async = false .
scheduleDelayedRepeating(Runnable task, int delay, int period, boolean async) : Schedule

task which will start first time after given delay. Task will repeate in given period. If async =
true task will be executed every time asynchronously.

Scheduling Task

Accessing the scheduler

Scheduling new task

scheduleDelayedRepeating(Runnable task, int delay, int period) : Alias to
scheduleDelayedRepeating(Runnable task, int delay, int period, boolean async) where async
= false .

Every method return TaskHandler which can be used to change executing behaviour. To cancel
the task, you can use TaskHandler.cancel() . You can also pass Task class which implements
Runnable and contains onRun(int currentTick) , onCancel() methods. Function onCancel() will be

called once the task is completed or canceled.

We recommend to use asynchronous tasks when your task does not require to be completed after
previously submited task. Multi threaded model comes with several benefits such as non-blocking
executing. WaterdogPE fully supports multi threaded features and even uses it.
Even is executing task using non-async task will not be executed on main thread. We use single
threaded executor which ticks and executes non-async tasks. Asynchronous tasks are executed
using ThreadPoolExecutor which can execute tasks on any of the threas from the pool.

When should I use async task?

