
A base proxy command is represented by a class extending dev.waterdog.command.Command .

The constructor of the class requires two arguments:

name: string settings: dev.waterdog.command.CommandSettings .

The name argument is the name of the command, as it would be written when you want to
execute it. The settings object contains information like command description, usage message,
required permission etc.

A CommandSettings object can be simply created using the CommandSettings.builder() function.
Using the Builder class, you can create the CommandSettings object in a single line of code,
finishing with Builder#build() . This can look like this:

That can be passed aswell when creating the command object without overwriting the constructor.
That said, overwriting the constructor looks more clean.

Commands Guide
Proxy Commands
Command class

Constructor

public InfoCommand() {

 super("wdinfo", CommandSettings.builder()

 .setDescription("waterdog.command.info.description")

 .setUsageMessage("waterdog.command.info.usage")

 .setPermission("waterdog.command.info.permission")

 .build());

}

The central function every Command needs to inherit and overwrite is boolean
onExecute(CommandSender sender, String alias, String[] args) . Sender represents the proxy entity
which executed the command. As both the ProxiedPlayer and the ConsoleCommandSender class
implement that interface, it is required to check if the sender provided is a player or not, at least
when you are performing any player-specific actions (sending popups, transferring..).

Alias is provided when the player used an alias of the command to trigger the command. If he uses
the base command name, that parameter will be null .

Args is an array of all the arguments provided with a command, excluding the command itself. For
the command /test 123 Hello true , the args array would look like this: {"123", "Hello", "true"} .
As you can see, you still need to perform manual user input sanatizing and proper type casting, as
we provide all the arguments as strings.

Many people might want to use client-sided autocompletion to reduce the time to type a
command.

Warning: You need to enable inject_proxy_commands in your config.yml in order for this to
work

Doing that looks complex but isnt that hard at all. Every command has a single, optional string

argument by default. This

behaviour can be overwritten. Every command class has the method public CommandData
craftNetwork() . This method is defining the above behaviour by default using the following code

Now, I won't go into detail what every single argument does. The two-dimensional

Execute Function

Client-Sided autocompletion

public CommandData craftNetwork() {

 CommandParamData[][] parameterData = new CommandParamData[][]{{

 new CommandParamData(this.name, true, null, CommandParamType.TEXT, null,

Collections.emptyList())

 }};

 return new CommandData(this.name, this.getDescription(), Collections.emptyList(),

(byte) 0, null, parameterData);

}

https://docs.waterdog.dev/uploads/images/gallery/2020-11/screenshot-86.png

CommandParamData array contains multiple optional overloads (for example: string, int int; or int,
int int). Using the protocol class com.nukkitx.protocol.bedrock.data.command.CommandParamType , you
can define data-types for parameters, which will be displayed client-sided. Every
CommandParamData object represents one argument has the following constructor arguments:

name: string: the name of the parameter, as displayed to the client
optional: bool: whether the parameter is optional or not
enumData: CommandEnumData: Client enum data. This can be for example a list of items or
other options. Can be tab-completed.
type: CommandParamType: The data type of the command argument. Examples: string, int,
player, boolean..
postfix: string: Command postfix, should be null in most cases
options: List: List of additional parameter options, for example disable auto completion

We can now take an example from the Waterdog default /server command.

Here two parameters are added to the command:

"server": the server that the you want to transfer to. has the type text, and is optional.
"player": the player you want to transfer. Has the type tagret(player) and is optional

Command Maps are the "storage" for commands. You register commands and aliases there aswell
as unregistering them. They also take care of interpreting command messages. In Waterdog
command maps are represented by the dev.waterdog.command.CommandMap interface. The
ProxyServer holds an instance of an class implementing that interface.

 @Override

 public CommandData craftNetwork() {

 CommandParamData[][] parameterData = new CommandParamData[][]{{

 new CommandParamData("server", false, null, CommandParamType.TEXT, null,

Collections.emptyList()),

 new CommandParamData("player", true, null, CommandParamType.TARGET, null,

Collections.emptyList())

 }};

 return new CommandData(this.getName(), this.getDescription(),

Collections.emptyList(), (byte) 0, null, parameterData);

 }

Command Maps

The SimpleCommandMap class implements default behaviour for command registering, unregistering
aswell as parsing as we know it in vanilla. It uses the command prefix / and takes care of
permission checking and success checking.

The DefaultCommandMap class extends the previously mentioned SimpleCommandMap and does
nothing special except registering the very basic commands that are shipped with Waterdog.

In the Waterdog API, entities which are able to execute commands are represented by the
CommandSender interface. It requires the ability to check for permission, the ability to send

messages, get the name etc.. When handling a command in onExecute(), you are not passed a
ProxiedPlayer but a CommandSender .

By default there are two types of Command Senders: ProxiedPlayer and ConsoleCommandSender .

The ProxiedPlayer class or any base class extending it also implements the CommandSender
interface. sendMessage will send the message to the player InGame and hasPermission will check
the permission map for the requested permission. getName will simply return the players name as
received in the LoginPacket.

ConsoleCommandSender is used by the Proxy Console. It has all permissions, meaning
hasPermission returns true in any case, getName returns "Console", and sendMessage will simply

send the message in the console with the INFO log level.

In onExecute, you get passed a CommandSender instance, but you don't know if its a player or the
console or any 3rd party command sender. Because of that you should check, for example using
instanceof , if the CommandSender is a player. If you don't do that but simply cast the
CommandSender to ProxiedPlayer , the command will throw an exception when executed by the

SimpleCommandMap

DefaultCommandMap

Command Senders

Defaults

ProxiedPlayer

ConsoleCommandSender

CommandSender in onExecute

console. Especially when the command attempts to invoke player-specific actions, for example
transfers, checking is required.

Revision #8
Created Tue, Nov 17, 2020 8:23 PM by TobiasDev
Updated Fri, Feb 12, 2021 2:54 PM by Alemiz

https://docs.waterdog.dev/user/1
https://docs.waterdog.dev/user/3

