
Events allow developers to execute own piece of code when something important happens (fe.
player joins). WaterdogPE comes with powerful API which allows developers to create and call own
events or handle default events.

A base event is represented by extending the dev.waterdog.event.Event class.

If base event class implements CancellableEvent interface, the event will be considered as
cancellable. We use cancellable events to signalize that some task should be canceled or ignored.
CancellableEvent implements these methods:

isCancelled() : bool returns true if the event is cancelled.
setCancelled(bool) : void sets whether the event will be cancelled.

Our goal is to use the multi threading feature provided by Java as much as possible. Therefore we
have created async events. To mark an event as async, use the AsyncEvent annotation. This event
will have all the event handlers called asynchronously using a thread pool executor. Async events
are supposed to not block the original thread where the event is called from. Using async events is
recommended especially for events which don't change any values.
Example of async event:

Events Guide

Event class

CancellableEvent

AsyncEvent

@AsyncEvent

public class TransferCompleteEvent extends Events {

 // Your code here...

}

Events are handled using runnables with the event as an argument (consumer). Subscribing to an
event is done through the EventManager class using the subscribe(Event, Handler, EventPriority)
method. This will add your method to list of handers which will be executed once event is called.
Example of handling an event:

If the event has more handlers we might want to create, prioritize the order of events. using the
EventPriority enum we can define priorities per handler. Events with lower priority will be

executed first and its values may be changed by handlers with higher priority. By default
EventPriority.NORMAL is used.

Subscribing with defined priority: subscribe(PlayerChatEvent.class, this::onChat,
EventPriority.HIGHEST)

To call specific event instances we use the callEvent(Event) method. This method will schedule
every task from event handlers in prioritized order. If the event has AsyncEvent annotation present
the method will return CompletableFuture<Event> which will be completed once all handlers will be
executed. If the event has not annotation preset, null will be returned.
Calling non-async event:

Event handling

public void onEnable() {

 // PlayerChatEvent - the event to be subscribed

 // this::onChat - reference to the method which will be executed

 this.getProxy().getEventManager().subscribe(PlayerChatEvent.class, this::onChat);

}

public void onChat(PlayerChatEvent event) {

 // Getting value provided by event

 ProxiedPlayer player = event.getPlayer();

 // Cancelling event

 event.setCancelled(true);

}

Event priority

Event calling

Calling async event:

ProtocolCodecRegisterEvent event = new ProtocolCodecRegisterEvent(protocol, builder);

proxy.getEventManager().callEvent(event);

if (event.isCancelled()){

 // Your code here...

}

PlayerLoginEvent event = new PlayerLoginEvent(this);

this.proxy.getEventManager().callEvent(event).whenComplete((futureEvent, exception) -> {

 if (futureEvent.isCancelled()) {

 // Your code here...

 }

});

Revision #8
Created Tue, Nov 24, 2020 8:58 AM by Alemiz
Updated Sun, Oct 30, 2022 7:52 AM by TobiasDev

https://docs.waterdog.dev/user/3
https://docs.waterdog.dev/user/1

