
The IJoinHandler  and IReconnectHandler  interfaces are providing plugins with an easy API to
change some of the most important parts of your network's behaviour.

The ProxyServer object holds one instance of each interface, accessible using 
ServerInfo#setReconnectHandler(IReconnectHandler)  and ServerInfo#setJoinHandler(IJoinHandler) . 

Setting them to null will cause massive issues. Rather implement NO-OP handlers.

The IJoinHandler  interface only requires one method to be implemented, namely the 
determineServer(ProxiedPlayer)  method. This method is called whenever a player connects to the 

proxy. 
This method can only return an instance of ServerInfo  or null . If the method returns a ServerInfo
object, the player's initial connection while be established to that ServerInfo.
If null is returned, the player will be disconnected from the proxy as there is no server available for
it to use. 

This method can be used perfectly if you are having multiple lobby-instances in your network (for
example). You can then implement f.e. a Round-Robin determination model to evenly distribute
players over your lobby-instances. You could also send player to servers depending on where they
were last, or depending on any other set of conditions that you would like to enforce.

Fallback & Join Handler
Introduction

Setting the handlers

IJoinHandler

Use case

https://en.wikipedia.org/wiki/Round-robin_scheduling


The IReconnectHandler  is called whenever a player is disconnected from a downstream server.
This can be caused by a kick, a server shutdown or even a Proxy <-> Downstream timeout. This
method will then be called in order to determine the future of the player. 
The interface only requires the implementation of the getFallbackServer(ProxiedPlayer, 
ServerInfo, String)  method, where the ServerInfo is the information holder of the downstream
server the player was disconnected from, and the String is the reason the player was disconnected
with (if given).

In some network concepts, you could want to prevent players from being kicked from the network.
This could be the case f.e. for minigames-servers where servers might crash / close down, but
you'd still want the player to stay on the proxy but instead be sent to your lobby. In that case
you'd just return the ServerInfo of the lobby to transfer the player to. 

Important is that you can filter this input by using the kickMessage  method parameter. With that
you could catch players which are being kicked for "Internal Server Error" or "Server closed", but
still completly disconnect players that are kicked for "You are banned" or "You have been kicked".
If you are returning a ServerInfo object, you can also send the player titles, text messages or other
types of output to notify him of the disconnect.

This note is regarding the performance of this system. You should not execute any time-
expensive code in either of these methods, as that causes some players to lag while the code is
running. Instead, try to run f.e. SQL queries periodically in the background, store the results easily
usable in-memory and access those results in the method.

IReconnectHandler

Use case

Important note

Examples
Setting the handlers

ProxyServer server = ProxyServer.getInstance();



A simple example plugin

Excerpt of the WaterdogPE code. 
Returns the first server from the server priority list.

IReconnectHandler reconnectHandler = new MyCustomReconnectHandler();

IJoinHandler joinHandler = new MyCustomJoinHandler();

server.setJoinHandler(joinHandler);

server.setReconnectHandler(reconnectHandler);

Custom IJoinHandler

public class VanillaJoinHandler implements IJoinHandler {

    private final ProxyServer server;

    public VanillaJoinHandler(ProxyServer server) {

        this.server = server;

    }

    @Override

    public ServerInfo determineServer(ProxiedPlayer player) {

        return 

this.server.getServer(this.server.getConfiguration().getPriorities().get(0));

    }

}

Custom IReconnectHandler
public class TestFallbackHandler implements IReconnectHandler {

    @Override

    public ServerInfo getFallbackServer(ProxiedPlayer proxiedPlayer, ServerInfo serverInfo, 

String s) {

        for(ServerInfo i : proxiedPlayer.getProxy().getServers()){

            if(!i.getServerName().equals(serverInfo.getServerName())){

                return i;

            }

https://github.com/WaterdogPE/Example-plugins/tree/main/RandomServerJoin


Tries to find a server which is not the server the player was kicked from. If none was found, return
null.

        }

        return null;

    }

}

Revision #2 
Created Fri, Nov 27, 2020 6:21 PM by TobiasDev
Updated Sun, Oct 30, 2022 7:52 AM by TobiasDev

https://docs.waterdog.dev/user/1
https://docs.waterdog.dev/user/1

